[ Pobierz całość w formacie PDF ]
G : ~~A imp A 1. ! ! b c. [ | b : ~~A R G b c | ] ==> c : A We now apply monl and dispose of the second subgoal using the rule starc, given above in the declaration of the theory MR. > by ( (rtac monl 1) THEN ( rtac starc 2)) G : ~~A imp A 1. ! ! b c. [ | b : ~~A R G b c | ] ==> c** : A Next we apply rules as in the proof in Section 2.4 (atac proves a subgoal by assumption after solving for unknowns). > by ( EVERY [ rtac incEc 1, rtac negE 1, atac 2]) G : ~~A imp A 1. ! ! b c. [ | b : ~~A R G b c c* : ~A | ] ==> c : ~~A > by ( rtac monl 1) G : ~~A imp A 1. ! ! b c. [ | b : ~~A R G b c c* : ~A | ] ==> ?a5( b, c) : ~~A 2. ! ! b c. [ | b : ~~A R G b c c* : ~A | ] ==> R G ?a5( b, c) c This leaves us with two subgoals, which are both proved by assumption, simpli- fying ?a5(b, c) to b. Since no unproved subgoals remain, Isabelle reports that we are nished. > by ( REPEAT (atac 1)) G : ~~A imp A No subgoals! A.2 Correctness By reasoning about our encoding and the metalogic M we can prove that, e.g., MR corresponds to the original R. We do this in two parts, by showing 34 rst adequacy, that any proof in R can be reconstructed in MR, and then faithfulness, that we can recover from any derivation in MR a proof in R itself. Adequacy is easy to show, because the rules of R map directly onto the axioms of MR. A simple inductive argument on the structure of proofs in R establishes this, cf. [5, x5.2]. Faithfulness is more complex, since there is no such simple mapping in this direction: arbitrary derivations in MR do not map directly onto proofs in R. Instead we use proof-theoretic properties of M: any derivation in M is equivalent to another in a (expanded) normal form [5, 40, 43]. Thus, given a derivation in MR we can, by induction over its normal form, nd a derivation in R. This establishes faithfulness (again cf. [5, x5.2]). Moreover, this proof is constructive: it not only tells us that there is a proof in R, it also provides an e ective method for nding one. Acknowledgements We thank Andreas Nonnengart and an anonymous referee for helpful comments. References [1] A. R. Anderson, N. D. Belnap, Jr., and J. M. Dunn. Entailment, The Logic of Relevance and Necessity, volume 2. Princeton University Press, Princeton, New Jersey, 1992. [2] A. Avron. Simple consequence relations. Information and Computation, 92:105{139, 1991. [3] A. Avron, F. Honsell, M. Miculan, and C. Paravano. Encoding modal logics in logical frameworks. Studia Logica, 1997. This issue. [4] D. Basin, S. Matthews, and L. Vigan o. Implementing modal and relevance logics in a logical framework. In L. Carlucci Aiello, J. Doyle, and S. Shapiro, editors, Proceedings of KR' 96, pages 386{397. Morgan Kaufmann Publish- ers, Inc., San Francisco, California, 1996. [5] D. Basin, S. Matthews, and L. Vigan o. Labelled propositional modal logics: theory and practice. Journal of Logic and Computation, 1997. To appear. [6] N. D. Belnap, Jr. Display logic. Journal of Philosophical Logic, 11:357{417, 1982. [7] R. Bull and K. Segerberg. Basic Modal Logic, pages 1{88. Volume 2 of Gabbay and Guenthner [19], 1984. [8] M. D'Agostino and D. M. Gabbay. A generalization of analytic deduction via labelled deductive systems. Part I : basic substructural logics. Journal of Automated Reasoning, 13:243{281, 1994. [9] K. Do sen. Sequent-systems for modal logic. Journal of Symbolic Logic, 50(1):149{168, 1985. 35 [10] K. Do sen. Negation as a modal operator. Reports on Mathematical Logic, 20:15{27, 1986. [11] M. Dummett. The philosophical basis of intuitionistic logic. In Truth and other enigmas, pages 215{247. Harvard University Press, Cambridge, Massachusetts, 1978. [12] J. M. Dunn. Relevance Logic and Entailment, pages 117{224. Volume 3 of Gabbay and Guenthner [19], 1986. [13] J. M. Dunn. Star and perp: Two treatments of negation. In J. Tomberlin, editor, Philosophical Perspectives, volume 7, pages 331{357. Ridgeview, Atascadero, California, 1994. [14] J. M. Dunn. Gaggle theory applied to modal, intuitionistic, and relevance logics. In I. Max and W. Stelzner, editors, Logik und Mathematik (Frege Kolloquium ' 93), pages 335{368. de Gruyter, Berlin, 1995. [15] J. M. Dunn. Positive modal logic. Studia Logica, 55:301{317, 1995. [16] L. Farinas Del Cerro and A. Herzig. Combining classical and intuitionistic ~ logic. In F. Baader and K. U. Schulz, editors, Frontiers of Combining Systems, pages 93{102. Kluwer Academic Publishers, Dordrecht, 1996. [17] M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Kluwer Academic Publishers, Dordrecht, 1983. [18] D. M. Gabbay. LDS { Labelled Deductive Systems (Volume 1 - Founda- tions). Clarendon Press, Oxford, 1996. [19] D. M. Gabbay and F. Guenthner, editors. Handbook of Philosophical Logic. D. Reidel Publishing Company, Dordrecht, 1983{1986. [20] P. Gardner. A new type theory for representing logics. In A. Voronkov, editor, Proceedings ofLPAR' 93, LNAI 698, pages 146{157. Springer, Berlin, 1993. [21] P. Gardner. Equivalences between logics and their representing type theo- ries. Mathematical Structures in Computer Science, 5:323{349, 1995. [22] G. Gentzen. Untersuchungen uber das logische Schlie en I, II. Mathe- matische Zeitschrift, 39:176{210, 405{431, 1934{1935. English translation in [23]. [23] G. Gentzen. Investigations into logical deduction. In M. Szabo, editor, The collected papers of Gerhard Gentzen, pages 68{131. North Holland, Amsterdam, 1969. [24] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1{102, 1987. 36 [25] R. Goldblatt. Semantical analysis of orthologic. Journal of Philosophical Logic, 3:19{35, 1974. [26] R. Harper, F. Honsell, and G. Plotkin. A framework for de ning logics. Journal of the ACM, 40(1):143{184, 1993. [27] A. Herzig. Raisonnement Automatique en Logique Modale et Algorithmes d' Uni cation. PhD thesis, Universit e Paul-Sabatier, Toulouse, 1989. [28] F. Honsell and M. Miculan. A natural deduction approach to dynamic logics. In S. Berardi and M. Coppo, editors, Proceedings of TYPES' 95, LNCS 1158, pages 165{182. Springer, Berlin, 1996. [29] G. Hughes and M. Cresswell. A companion to modal logic. Methuen, Lon- don, 1984. [30] I. Humberstone. Interval semantics for tense logic: Some remarks. Journal of Philosophical Logic, 8:171{196, 1979. [31] B. J onsson and A. Tarski. Boolean algebras with operators. American Journal of Mathematics, 73{4:891{939, 127{162, 1951-52. [32] S. Martini and A. Masini. A computational interpretation of modal proofs. In H. Wansing, editor, Proof Theory of Modal Logic, pages 213{241. Kluwer Academic Publishers, Dordrecht, 1996. [33] A. Masini. 2-sequent calculus: a proof theory of modalities. Annals of Pure and Applied Logic, 58:229{246, 1992. [34] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer, editors. Selected Papers on Automath. Elsevier, Amsterdam, 1994. [35] H. J. Ohlbach. A Resolution Calculus for Modal Logics. PhD thesis, Uni- versit Kaiserslautern, Kaiserslautern, Germany, 1988. at [36] H. J. Ohlbach. Translation methods for non-classical logics: an overview. Bulletin o f the IGPL, 1(1):69{90, 1993. [37] E. Orlowska. Relational interpretation of modal logics. In H. Andr eka, J. D. Monk, and I. N emeti, editors, Algebraic Logic. North-Holland, Amsterdam, 1991. [38] E. Orlowska. Relational proof system for relevant logics. Journal of Sym- bolic Logic, 57(4):1425{1440, 1992. [39] L. Paulson. The foundation of a generic theorem prover. Journal o f Auto- mated Reasoning, 5:363{397, 1989.
[ Pobierz całość w formacie PDF ] zanotowane.pldoc.pisz.plpdf.pisz.plalternate.pev.pl
|